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In this paper we give a sequential system of minimal quantum logic which 
enjoys cut-freeness naturally. The duality theorem, the cut-elimination theorem, 
and the completeness theorem with respect to the relational semantics of R. I. 
Goldblatt are presented. Due to severe limitations of space, technically heavy 
proofs of the first two theorems are relegated to a subsequent paper. 

1. INTRODUCTION 

More than a decade ago we introduced Gentzen's sequential methods 
into the realm of  quantum logic (Nishimura, 1980). The method was 
elaborated further by Cutland and Gibbins (1982) to render a sequential 
system of  minimal quantum logic which enjoys regularity and duality. 
Finally Tamura (1988) has succeeded in giving a cut-free sequential system 
of  minimal quantum logic. However, his system enjoys cut-freeness in such 
an unreasonably distorted manner that his proof  for the cut-elimination 
theorem appears more esoteric than it really is. The main purpose of  the 
present paper is to present a more lucid sequential makeup of  minimal 
quantum logic, and then to establish its fundamental properties, including 
the so-called cut-elimination theorem. 

While in distributive logics the relationship of cut-free sequential 
systems such as LK and LJ and their semantics are so direct as to make the 
completeness proof  an easy exercise, in nondistributive logics somewhat 
daunting proof-theoretic preliminary considerations seem inevitable to 
arrive finally at the completeness theorems of  cut-free sequential systems. 
Although we deal exclusively with minimal quantum logic in this paper, 
our present study will hopefully shed light, as a prototype, on future study 
of  nondistributive logics with an involutive negation in which de Morgan's 
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laws hold. We expect in particular that this will be the case for so-called 
quantum logic in which the orthomodular law obtains. While the study of 
intermediate logics between classical and intuitionistic logics is flourishing, 
the study of intermediate logics between classical and minimal quantum 
logics remains relatively untouched. We hope that the present study will 
change the situation radically. 

The sequential system GMQL that we now enunciate for minimal 
quantum logic consists of the following inference rules: 

F-~A 
(extension) 

~r, F-*A, Z 

�9 , F ~ A  fl, F---,A 
( ^ - -0  ~ ^ # , F ~ A '  . ^ # , F ~ A  

F---~A, ~ F---~A, # 
( ~ v )  

F-,A, ~ v # '  I-'~A, ~ v#  

~ A  f l - ,A  r - - ~  r--,fl 
(v-~) ,  ( ~ A )  

O~ V fl--*A r--~ A fl 

F-~A F ~ A  ( '-,),  (--~') 
A', F--~ ~A, r '  

~, F.-..A F ~ A , ~  ("-~), (-~,,) 
~", F-~A F-~A, ~" 

F ~ A  
A ' ~ F '  ( ' ~ ' )  

a', F ~ A  
(~ v #)', F ~ A '  

F ~ A ,  or 
F-.~A, (o~ ̂  # ) "  

~ ' ~ A  # ' ~ A  

(~ A #) '~A 

r ~ o e '  F~ f l "  
v # , r ~  

//', F ~ A  

(o~ v #)', r..~,~ 

F . A ,  fl' 
r---, A, (~ A #)" 

(V--,'), 

(V ~ ' ) ,  

( v ' ~ )  

(.~. A ~) 

F ~ '  F~oe'  
r - ( ~  v #)' 

o~'---, A #'-~A 
~ A , ~  A# 

(-..~. V t) 

(t..~ ^ ) 

Now some notational and terminological comments are in order. In 
this paper we adopt '  (negation), ^ (conjunction), and v (disjunction) as 
primitive logical symbols. Propositional variables are denoted by p, q , . . . ,  
while wffs (well-formed formulas), also called formulas, are denoted by 
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~, fl . . . . .  The grade of a wff a, denoted by p(a), is defined inductively as 
follows: 

(1) g(p) = 0 for any propositional variable p. 
(2) g(a') = g(~) + 1. 
(3) g(~ ^/~) = r v t~) = ~(~) + ~(/~) + 2. 

Finite (possibly empty) sets of wffs are denoted by F, A, H . . . . .  
Given a finite set F of wffs, F'  denotes the set {e'laEF}. A sequent F--,A 
means the ordered pair (F, A) of finite sets F and A, while the sets F and 
A are called the antecedent and the succedent of the sequent F - , A ,  
respectively. Such self-explanatory notations as II, F--, A, Z for r l w  F--, 
A u Z are used freely. A sequent of  the form e ~ a is called an axiom sequent. 
The notion of  a proof P of a sequent F ~ A with length n is defined 
inductively as follows: 

(1) Any axiom sequent e ~ a  is a proof of itself with length 0. 
(2) If  P is a proof of a sequent F--, A with length n and 

F--,A 

I I - ~ Z  

is an instance of  an inference rule of GMQL, then 

P 
I I ~ Z  

is a proof  of the sequent II ~ Z with length n + 1. 
(3) If  P~ is a proof  of  a sequent F; ~ A; with length ni (i = 1, 2) and 

Fl -*Al  F2~A2 

is an instance of  an inference rule of GMQL, then 

el  Pz 
U ~ Z  

is a proof of the sequent 1-I~Z with length max{n1, n:} + 1. 

The length of a proof P is denoted by I(P). A sequent F ~ A is said to be 
provable if it has a proof. Otherwise it is called consistent. 

Although our cut-free sequential system GMQL does not satisfy the 
so-called subformula property in its strict sense, it gives a decision proce- 
dure for the word problem of free ortholattices once the completeness 
theorem is established, for which it suffices to note that r < r ^ fl)') 
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and p(fl') < p((~t ^ fl)') for rule ( A ' ~ )  by way of example. For algebraic 
and semantical decision procedures, the reader is referred to Bruns (1976) 
and Goldblatt (1974, 1975). Fortunately, minimal quantum logic enjoys 
these three kinds of decision procedures; algebraic and semantical ap- 
proaches to the decision problem of quantum logic have not so far 
succeeded. This is why we should try the third one, and this paper hopes to 
be the starting point of its proof-theoretic study. 

Roughly speaking, if we deprive our system GMQL of the inference 
rifles ( v ' ~ ) ,  (--* ^ 3, ( A ' ~ ) ,  ( ~  v '), (V ~ ' ) ,  and ('--* A) and we agree 
to admit somewhat restricted (cut) as an inference rule, we obtain the 
system of Cutland and Gibbins (1982). The rule (cut) consists of the 
following two forms: 

F~A1,  e e ~ A 2  
F ~ A , ,  A 2 

F1--* ot 0~, F2--~ A 
Fa, 1"2 -~ A 

(cut-l) 

(cut-2) 

The wff ~t in (cut-l) and (cut-2) is called the cut formula. In passing we note 
that to admit unrestricted (cut) for such logical systems as ours would 
make them degenerate into classical logic, as was remarked by Cutland and 
Gibbins (1982). 

Tamura (1988) gave his cut-free system by exploiting the legacy of 
Cutland and Gibbins (1982) but incorporating their inference rules surely 
except (cut) into his system in unnecessarily restricted forms. This unrea- 
sonable restriction forced him in the proof of the cut-elimination theorem 
to combine wffs in the antecedent of a sequent by conjunction and wffs in 
its succedent by disjunction, and then to dissolve such unnatural combina- 
tions. Such a proof is not compatible with Gentzen's (1935) original 
philosophy and aesthetics, and is to be avoided if possible. 

Furthermore, the conceptual significance of Lemma 4 in Tamura's 
(1988) paper remained vague at best there. This is distilled into the duality 
theorem in Section 2, which is followed by the so-called cut-elimination 
theorem in Section 3. We believe that the duality theorem is no less 
important than the cut-elimination theorem itself, and we would like to 
propose that these two theorems should be called the first and the second 
fundamental theorems of proof theory of GMQL. The final section is 
devoted to the completeness theorem. A proof for the completeness theo- 
rem without recourse to the cut-elimination theorem, which would give a 
semantical proof for the cut-elimination, seems an intriguing topic for 
future study. 
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2. THE DUALITY THEOREM 

Two wffs ~ and fl are said to be provab ly  equivalent ,  in notation ~ - fl, 
if for any finite sets F and A of wffs we have that 

(a) the sequent ~, F--, A is provable iff the sequent fl, F ~ 8  is prov- 
able; and 

(b) the sequent F -~ A, ~ is provable iff the sequent F -~ A, fl is prov- 
able. 

It is easy to see that this is indeed an equivalence relation among wffs. 

Theorem 2. I The fundamental theorem of provability equivalence). I f  
�9 1 ~- fli and o~z ~- f12, then ~ ~ fl~, ~1 ^ ~2 ~- fll ^ f12, and ~1 v ~2 -~ fll v flz- 

P r o o f  If  7, 6 1 , . . . ,  6n are wffs and Pl . . . .  ,Pn are distinct proposi- 
tional variables, we write 7161/pl, �9 �9 �9 6n/Pn] for the wff obtained from 7 by 
replacing every occurrence of Pi by 6,. (1 < i < n). Whenever we use this 
notation, it will always be assumed that the propositional variables at issue 
are distinct. The theorem follows readily from the following two statements 

(I) If  6 1 = r  ~-~n and a sequent 7 1 6 1 / P l , . . . , 6 n / P n ] ,  F ~ A  
has a proof P with I(P) <- m,  then the sequent ~[~1/Pl . . . . .  ~rn/pn], F--,A is 
also provable. 

(II) I f  61 ~- 0"1 . . . . .  6n ~- an, and a sequent F - , A ,  ~'[61/pl . . . . .  6n/Pn] 
has a proof P with I(P) < m,  then the sequent F --, A, 7[al/el . . . . .  Gn/Pn] is 
also provable. 

These two statements are proved simultaneously by double induction 
principally on g(7) and secondly on m. The proof is divided into cases 
according to which inference rule is used as the last inference in P. The 
details are safely left to the reader. 

The lengthy proof of the following first main theorem of this section 
is relegated to a subsequent paper. 

Theorem 2 .2  (The first duality theorem). If  ~ - fl, then ~ ~- fl". 

Theorem 2.2 implies a version of Lemma 4 of Tamura (1988) at once. 

Corol lary  2.3. (a) If  a sequent F, I-I"-,A, E' is provable, then the 
sequent A', Z--, F',  H is also provable. 

(b)  I f  a sequent F--,A'  is provable, then the sequent F, A ~  is 
provable. 

(c) If  a sequent F'--,  A is provable, then the sequent --,F, A is also 
provable. 

P r o o f  By Theorem 2.2 it suffices only to take into account the rules 
( ' -~ ' ) ,  ( ' ~ ) ,  and (-~'). 
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The proof of the following main theorem of this section is also 
deferred to a subsequent paper. 

Theorem 2.4 (The second duality theorem). If  al-~ fll and a2 "~ f12, 
t h e n  a I A a 2 ' ~  (fl~ V fl~)t and al v a2 ~ (fl~ A fl~)'. 

Corollary 2.5. If  a l  ----" f l l  and ~2 "~ f12, then a] ^ ~ - (ill v f12)' and 
~ v ~; ~ (fl, ^ fl~)'. 

Proof. By Theorem 2.1, 2.2, and 2.4, we have that a~ ^ a ~ -  ~ 
(a'( v a~)' ~- (ill v f12)" and a] v a~ -~ (a]' ^ a~)' -~ (fl, ^ f12)'. 

3. THE CUT-ELIMINATION THEOREM 

Theorem 3.1. A sequent a, t ,  F--,A is provable iff the sequent 
^ t ,  F ~ A is provable. Similarly, a sequent H --. Y~, ?, 5 is provable iff the 

sequent 11--, Z, 7 v 5 is provable. 

Proof. For both statements, the only-if part follows readily from 
(^ - - , )  or (--, v) .  The if part can be established by induction on the 
construction of  a proof  of ~ A t ,  F ---, A or F --, A, ~ v ft. 

Corollary 3.2. A sequent a ' ,  fl', F - , A  is provable iff the sequent 
(~ v fl)', V - ,  A is provable. Similarly, a sequent 11 --, E, ?', 5' is provable iff 
the sequent 1I --. Y., (? ^ 5)' is provable. 

Proof  Follows from Corollary 2.5 and Theorem 3.1. 

Theorem 3.3. If  a sequent a v t ,  F --* A is provable, then the sequents 
a, 1" ~ A and t ,  V - ,  A are provable. Similarly, if a sequent 11 --, Y~, y ^ 5 is 
provable, then the sequents 17-+ ~, ~ and 11--. Y~, 5 are provable. 

Proof. By induction on the construction of a proof  of  a v t ,  F ~ A or 
II --, Y~, y ^ 5. Here we deal only with the case that the last step of a proof 
of a sequent a v t ,  F-+ A is ( v -+'). So it must be one of the following two 
forms. 

F ~ '  F ~ f l '  
( v  .-.r 

vfl ,  F ~  

a v f l ,  F l - o a '  a v f l ,  Fl--+p' 
a v fl, a v p, F ~  ( v ~ ' )  

In the former case the sequents a", F-o and fl", F ~  are provable by ('--*). 
So the desired sequents a, F ~  and fl, F--* are provable by Theorem 2.2. In 
the latter case the sequents a, FI -~a ' ,  fl, FI ~ a ' ,  a, F 1 ~ p ' ,  and fl, Fl ~ p ' ,  
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are provable by the induction hypothesis. So the desired sequents 
a, a v p, Fl --, and r, a ^ p, F~ ---, are provable as follows: 

~,Fl---~a' ~,Fl---, p '  
( v ---#) 

0~, O" V p, F 1 --* 

fl, F1--* a" fl, F l --* p" (v~') 
fl, a v p, F l ~  

Corollary 3.4. If  a sequent (a ^ fl)', F ~ A is provable, then the se- 
quents a ' ,  F--*A and fl', F--,A are provable. Similarly, if a sequent 
II - ,  Z, (~ v f ) '  is provable, then the sequents II --, Z, y'  and [I ~ Z, f '  are 
provable. 

Proof. Follows from Theorem 3.3 and Corollary 2.5. 

The lengthy proof of the following main theorem of this section is 
postponed to a subsequent paper. 

Theorem 3.5 (The cut-elimination theorem). If  sequents F 1 ~ A I ,  a 
and a, F2-~A2 are provable with A~ = ~ or F 2 = ~ ,  then the sequent 
F~, F2~Z~ ,  A2 is also provable. In other words, (cut) is permissible in 
GMQL. 

4. THE C O M P L E T E N E S S  T H E O R E M  

An O-frame is a pair (X, • of a nonempty set X and an orthogonality 
relation (i.e., an irreflexive and symmetric binary relation) on X. Given 
Y ~_ X, we write Y" for the set {x~Xlx• for any y e  Y). A subset Y of X 
is said to be • if Y = Y•177 

An O-model is a triple (X, • D), where (X, • is an O-frame and D 
assigns to each propositional variable p a • subset D(p) of X. The 
notation I[ct I[ for a wff ~ is defined inductively as follows: 

(1) Ilpll = D(p) for any propositional variable p. 

(2) II �9 ^ ~ II = II �9 II ~ II ~ II, 
(3) I1~'11 = ll~ i .  
(4) t a v  fll = Ila' ^ ~'ll =(11~11• I1~11• • 

Given x ~ X  and a wife ,  we write V(~; x) = 1 if xelJ~ll and V(a; x) = 0  if 
xr C~ven x ~ x  and a sequent r - ~ a ,  we write z ( r - ~ a , x ) = ~  if  
x~(3  {11~ II I ~ r }  and xr u{ll/~ I1• ~A}) • and V(F --, A; x) = 0 otherwise. 

A sequent F--. A is said to be realizable if there exists an O-model 
(X, J-, D) and some x e X  such that V(F--,A; x) = 1. The sequent F---,A is 
called valid otherwise. 
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Theorem 4.1 (The soundness theorem). If  a sequent F ~ A is provable, 
then it is valid. 

Proof. By induction on the construction of a proof of the sequent 
F ~ A .  

A set f of wffs is said to be admissible if it satisfies the following 
conditions: 

(1) I f p  is a propositional variable and p c f t ,  then p'cf~. 
(2) If  ~t e f t  and fl is a subformula of ~, then fl o f .  
(3) If  (~ v f l ) c f ,  then (0t' ̂  f l ' ) ' c fL 

A finite set F of wffs is said to be inconsistent if for some wff ~, both 
of  the sequents F ~ ~t and F ~ ~' are provable. Otherwise the set F is said 
to be consistent. 

Lemma 4.2. A finite set F of  wffs is inconsistent iff the sequent F ~  is 
provable. 

Proof. The if part is obvious. The only-if part can be shown easily as 
follows: 

~ ( '~)  

F--,~ F--, ~' ~, ~'--, ( ^ ~ )  ( - , ^ )  
F a c t  ^ ~' ~ ^ ~ ' ~  (cut) 

F ~  

an admissible set f of wits, the f-canonical O-model 
(Xo, • Do) is defined as follows: 

Given 
~ r  = 

(1) 
(2) 

(3) 

Xo is the set of  all the consistent subsets of f .  
For any F1,  F 2 C X o ,  F 1 "L O l" 2 ifffor some ~ 'cf t ,  either: (a) both of  
the sequents F1--* ~t and FI ~ ~' are provable, or (b) both of  the 
sequents F1 ~ ~t' and F2 ~ ~ are provable. 
If  p ~ f ,  then Do(p) = ~ ,  while if p eft ,  then Do(p) consists of all 
the consistent subsets F of f such that the sequent F ~ p  is 
provable. 

Theorem 4.3. J/g(f~) is an O-model. 

Proof Obviously the relation • is symmetric. That the relation • is 
irreflexive follows from our assumption that every element of Xn is a 
consistent set of  wffs. Now it remains to show that Do(p) is • for 
any propositional variable p. Unless p Eft, there is nothing to prove. So let 
p cft.  Let F be an element of Xo such that the sequent F ~ p  is not 
provable. Suppose for the sake of contradiction that the set {p'} is 
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inconsistent, which implies by Lemma 4.2 that the sequent p ' ~  is provable. 
By Corollary 2.3 the sequent ~ p  is provable, which implies by (extension) 
that the sequent F--,p is provable. This is a contradiction. So (p'}~X~a. 
Suppose, for the sake of contradiction, that for some ~'ef~, either both of 
the sequents F ~ ~ and p'  ~ ~ are provable or both of the sequents F ~ ~' 
and p '  ~ ~t are provable. Here we deal only with the former case, leaving a 
similar treatment of the latter to the reader. By Corollary 2.3 the sequent 

~ p  is provable, which implies by (cut) that the sequent F ~ p  is provable. 
This is a contradiction. Thus it cannot be the case that F • {P'}, while for 
any A~Xo such that the sequent A ~ p  is provable, A _L {p}. This implies 
that the set of  all A~Xn such that the sequent A ~ p  is provable is • 

The disjunction grade of a wff a, denoted by #v (~), is defined induc- 
tively as follows: 

(1) #,, (p) ---0 for any propositional variable p. 
(2) #,, (~') = #,, (~). 
(3) e~(~ A #) =~(~) +~(#). 
(4) #v(~ v r) = e,,(~) + e~(fl) + 1. 

Theorem 4.4 (The fundamental theorem for Jl(fl)).  For any ~ef~ and 
any FeX~, the sequent F ~  is provable iff r lt tl in ~'(f~). 

Proof The proof is carried out by double induction principally on 
#,, (~) and secondarily on #(~). The proof is divided into several cases. 

(a) In the case that ~ is a propositional variable: It follows from the 
definition of Do. 

(b) In the case that �9 = fl' for some wff #: If F ~ # "  is provable, then 
r ~ ,  I1# II by induction hypothesis, which implies that F ~ I1#'11. Suppose, for 
the sake of contradiction, that the set{#} is inconsistent, which implies by 
Lemma 4.2 that the sequent # ~ is provable. Thus the sequent F ~ # '  is 
provable as follows: 

#--, 

~#"  (extension) 
F--,#" 

This is a contradiction. So it must be the case that {fl}eXt~. Suppose, for 
the sake of contradiction, that for some ~,'~f~, either both of the sequents 
F ~ y' and # ~ y are provable or both of the sequents F ~ y and # ~ y' are 
provable. Here we deal only with the former case, leaving safely a similar 
treatment of the latter to the reader. The desired contradiction is obtained 
as follows: 

C--,3 
r ~ r '  ~' "" #'  (cut) 



112 Nisl~mura 

Thus it cannot be the case that F-tu{fl}. Since { } 11 11 by induction 
hypothesis, this means that F~ lip II -- II~'ll. 

(c) In the case that a is of  the form fl A ? for some wits fl and ?: If  the 
sequent F ~ a is provable, then both of  the sequents F ~ fl and F ~ y are 
provable by Theorem 3.3, which implies by induction hypothesis that 
r Ufll[ and r ll?ll-So r ll ll n Ilrll = lift ^  ll. Unless the sequent F ~ i s  
provable, suppose, for the sake of  contradiction, that both of  the sequents 
F--*fl and F -~y  are provable. The desired conclusion is obtained as 
follows: 

F ~ f l  F ~ '  (-*^) 

Thus one of the sequents F ~ fl and F ~ y is consistent, which implies by 
induction hypothesis that rr or r ll ll So r llfl ^ ?11 = Ilflll ll ll. 

(d) In the case that a is of the form fl v ? for some wffs fl and ?: Use 
Theorem 2.4. 

Theorem 4.5 (The completeness theorem). A sequent F ~ A is realiz- 
able iff it is consistent. 

Proof. The only-if part is the soundness theorem already established. 
To see the if part, take an admissible set f~ such that F u 
{ill v - . .  v fin } --- [2, where A = {ill . . . .  , fin }. By Theorem 3.1 the sequent 
F ~ A  is consistent iff the sequent F-off  I v . . . v  fin is consistent. The 
desired conclusion follows readily from Theorem 4.4. 

We remark in passing that in the proof of Theorem 4.5 it does not 
matter how to insert parentheses in fl~ v . .  �9 v fl~. 
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